Reasoning About the World

Wessel Bruinsma

Invenia Labs, First InveniaCon

20 December 2019

Reasoning

If the butler killed the man, then there must be a pistol.
There is no pistol.
Therefore, the butler did not kill the man.

If the butler killed the man, then there must be a pistol.
There is no pistol.
Therefore, the butler did not kill the man.

If the cook killed the man, then there must be a knife.
There is a knife.
Therefore, the cook killed the man.

There is no pistol.
Therefore, the butler did not kill the man.

There is a knife.
Therefore, the cook killed the man.

Reasoning

If		B	, then	P
Therefore,		\bar{P}		
If	C			
		, then	K	

Therefore,

Reasoning

$$
\begin{aligned}
& \frac{B}{P} \Longrightarrow P \\
& \therefore \bar{B} \\
& C \Longrightarrow K \\
& K \\
& \therefore C
\end{aligned}
$$

$$
\begin{aligned}
\text { valid: } & \frac{B}{P} \Longrightarrow P \\
\text { (modus tollens) } & \therefore \bar{B} \\
& C \Longrightarrow K \\
\text { invalid: } & K \\
\text { (logical fallacy) } & \therefore C
\end{aligned}
$$

$$
\begin{array}{rl}
\text { valid: } & \frac{B}{P} \Longrightarrow P \\
\text { (modus tollens) } & \therefore \bar{B} \\
? & C \Longrightarrow K \\
& K \Longrightarrow C \text { becomes more plausible }
\end{array}
$$

$\therefore C$ becomes more plausible
? $\quad \frac{B}{P} \Longrightarrow P$ becomes more plausible
$\therefore \bar{B}$ becomes more plausible
?
$C \Longrightarrow K$ becomes more plausible K
$\therefore C$ becomes more plausible

Plausible Reasoning

- Propositions have a degree of plausibility.

Plausible Reasoning

- Propositions have a degree of plausibility.
- Reasoning depends on background information.

Plausible Reasoning

Notation (Plausibility)

$(A \mid X)$: plausibility of A given background information X.

Plausible Reasoning

Notation (Plausibility)

$(A \mid X)$: plausibility of A given background information X.

Goal: figure out what exactly plausibility is.

Plausible Reasoning: Representation of Plausibility

Plausible Reasoning: Representation of Plausibility

Assumption (Representation)

- Plausibility is ordered.

Plausible Reasoning: Representation of Plausibility

Assumption (Representation)

- Plausibility is ordered.
- Between any two plausibilities, we can find another plausibility.

Plausible Reasoning: Representation of Plausibility

Assumption (Representation)

- Plausibility is ordered.
- Between any two plausibilities, we can find another plausibility.

Lemma (Representation)

Plausibility can be represented by real numbers.

Plausible Reasoning: Truth

Plausible Reasoning: Truth

Assumption (Truth)

- There exists a plausibility T such that $(A \mid X) \leq \mathrm{T}$ for all A.
- $($ tautology $\mid X)=\mathrm{T}$.

Plausible Reasoning: Negation

Plausible Reasoning: Negation
$(\bar{A} \mid X)$

Plausible Reasoning: Negation

$(\bar{A} \mid X)$

Plausible Reasoning: Negation

$(\bar{A} \mid X)$

Plausible Reasoning: Negation

plausibility of negation

Plausible Reasoning: Negation

Assumption (Negation)

There exists a decreasing function N such that

$$
(\bar{A} \mid X)=N(A \mid X)
$$

for all A.

Plausible Reasoning: Negation

Define $\mathrm{F}=N(\mathrm{~T})$.

Plausible Reasoning: Negation

Define $\mathrm{F}=N(\mathrm{~T})$.
Then $\mathrm{F} \leq(A \mid X) \leq \mathrm{T}$

Plausible Reasoning: Negation

Define $\mathrm{F}=N(\mathrm{~T})$.
Then $\mathrm{F} \leq(A \mid X) \leq \mathrm{T}$:

- $(\bar{A} \mid X) \leq \mathrm{T}$.
(Definition of T)

Plausible Reasoning: Negation

Define $\mathrm{F}=N(\mathrm{~T})$.
Then $\mathrm{F} \leq(A \mid X) \leq \mathrm{T}$:

- $(\bar{A} \mid X) \leq \mathrm{T}$.
$\Rightarrow N(\bar{A} \mid X) \geq N(\mathrm{~T})$.
(Definition of T)
(N is decreasing)

Plausible Reasoning: Negation

Define $\mathrm{F}=N(\mathrm{~T})$.
Then $\mathrm{F} \leq(A \mid X) \leq \mathrm{T}$:

- $(\bar{A} \mid X) \leq \mathrm{T}$.
$\Rightarrow N(\bar{A} \mid X) \geq N(\mathrm{~T})$.
$\Rightarrow(A \mid X) \geq \mathrm{F}$.
QED.
(Definition of T)
(N is decreasing)
(Definition of N and F)

Plausible Reasoning: Conjunction

Plausible Reasoning: Conjunction

$(A B \mid X)$

Plausible Reasoning: Conjunction

Plausible Reasoning: Conjunction

Plausible Reasoning: Conjunction

$$
\begin{aligned}
A & =\text { a blue eye } \\
B & =\text { brown hair, } \\
A B & =\text { a blue eye and brown hair. }
\end{aligned}
$$

Plausible Reasoning: Conjunction

$(A \mid X)=$ high

$$
\begin{aligned}
A & =\text { a blue eye } \\
B & =\text { brown hair, } \\
A B & =\text { a blue eye and brown hair. }
\end{aligned}
$$

Plausible Reasoning: Conjunction

$$
\begin{aligned}
A & =\text { a blue eye } \\
B & =\text { a green eye, } \\
A B & =\text { a blue eye and a green eye. }
\end{aligned}
$$

Plausible Reasoning: Conjunction

$$
\begin{aligned}
A & =\text { a blue eye } \\
B & =\text { a green eye, } \\
A B & =\text { a blue eye and a green eye. }
\end{aligned}
$$

Plausible Reasoning: Conjunction

Plausible Reasoning: Conjunction

Plausible Reasoning: Conjunction
$(A \mid X)$

$(A B \mid X)$

$$
(B \mid A X)
$$

$$
\begin{aligned}
A & =\text { a blue eye } \\
B & =\text { a green eye, } \\
A B & =\text { a blue eye and a green eye. }
\end{aligned}
$$

Plausible Reasoning: Conjunction
$(A \mid X)=$ high

$(B \mid A X)=$ low

$$
\begin{aligned}
A & =\text { a blue eye }, \\
B & =\text { a green eye, } \\
A B & =\text { a blue eye and a green eye. }
\end{aligned}
$$

Plausible Reasoning: Conjunction

Plausible Reasoning: Conjunction

Plausible Reasoning: Conjunction

Assumption (Conjunction)

There exists a function o such that

$$
(A B \mid X)=(A \mid X) \circ(B \mid A X)
$$

for all A and B.

Plausible Reasoning: Conjunction

$$
x \circ \mathrm{\top}=
$$

Plausible Reasoning: Conjunction

$$
x \circ \top=x
$$

Plausible Reasoning: Conjunction

$$
\begin{aligned}
& x \circ \mathrm{~T}=x: \\
& \quad \bullet(A \mid X)=(A(B+\bar{B}) \mid X) .
\end{aligned}
$$

Plausible Reasoning: Conjunction

$$
x \circ \mathrm{~T}=x:
$$

- $(A \mid X)=(A(B+\bar{B}) \mid X)$.
- $(A(B+\bar{B}) \mid X)=(A \mid X) \circ(B+\bar{B} \mid A X)$. (Definition of ०)

Plausible Reasoning: Conjunction

$$
\begin{array}{ll}
x \circ \mathrm{~T}=x: \\
& (A \mid X)=(A(B+\bar{B}) \mid X) . \\
& (A(B+\bar{B}) \mid X)=(A \mid X) \circ(B+\bar{B} \mid A X) . \\
& \text { (Definition of } \circ \text {) } \\
\bullet(B+\bar{B} \mid A X)=\mathrm{T} . & \text { (Definition of T) }
\end{array}
$$

Plausible Reasoning: Conjunction

$$
\begin{array}{rlr}
x \circ \mathrm{~T}=x: \\
& (A \mid X)=(A(B+\bar{B}) \mid X) . & \\
\bullet & (A(B+\bar{B}) \mid X)=(A \mid X) \circ(B+\bar{B} \mid A X) . & \text { (Definition of } \circ \text {) } \\
\bullet & (B+\bar{B} \mid A X)=\mathrm{T} . & \text { (Definition of } \mathrm{T}) \\
\Rightarrow & (A \mid X)=(A \mid X) \circ \mathrm{T} . & \\
& \text { QED. } &
\end{array}
$$

Plausible Reasoning: Conjunction

$$
x \circ \mathrm{~F}=
$$

Plausible Reasoning: Conjunction

$$
x \circ \mathrm{~F}=\mathrm{F}
$$

Plausible Reasoning: Conjunction

$$
\begin{aligned}
& x \circ \mathrm{~F}=\mathrm{F}: \\
& \Rightarrow(\overline{A \bar{A}} \mid X)=\mathrm{T} .
\end{aligned}
$$

Plausible Reasoning: Conjunction

$$
\begin{aligned}
& x \circ \mathrm{~F}=\mathrm{F}: \\
& \Rightarrow(\overline{A \bar{A}} \mid X)=\mathrm{T} . \\
& \Rightarrow N(\overline{A \bar{A}} \mid X)=N(\mathrm{~T}) .
\end{aligned}
$$

(Definition of T)

Plausible Reasoning: Conjunction

$$
\begin{aligned}
& x \circ \mathrm{~F}=\mathrm{F}: \\
& \Rightarrow(\overline{A \bar{A}} \mid X)=\mathrm{T} . \\
& \Rightarrow N(\overline{A \bar{A}} \mid X)=N(\mathrm{~T}) . \\
& \Rightarrow(A \bar{A} \mid X)=\mathrm{F} .
\end{aligned}
$$

(Definition of T)
(Definitions of N and F)

Plausible Reasoning: Conjunction

$$
\begin{aligned}
& x \circ \mathrm{~F}=\mathrm{F}: \\
& \Rightarrow(\overline{A \bar{A}} \mid X)=\mathrm{T} . \\
& \Rightarrow N(\overline{A \bar{A}} \mid X)=N(\mathrm{~T}) . \\
& \Rightarrow(A \bar{A} \mid X)=\mathrm{F} . \\
& \bullet \underbrace{(A \bar{A} \mid X)}_{\mathrm{F}}=(A \mid X) \circ(\bar{A} \mid A X) .
\end{aligned}
$$

(Definition of T)
(Definitions of N and F)
(Definition of o)

Plausible Reasoning: Conjunction

$$
\begin{aligned}
& x \circ \mathrm{~F}=\mathrm{F}: \\
& \Rightarrow(\overline{A \bar{A}} \mid X)=\mathrm{T} . \\
& \Rightarrow N(\overline{A \bar{A}} \mid X)=N(\mathrm{~T}) . \\
& \Rightarrow(A \bar{A} \mid X)=\mathrm{F} . \\
& \cdot \underbrace{(A \bar{A} \mid X)}_{\mathrm{F}}=(A \mid X) \circ(\bar{A} \mid A X) . \\
& \cdot(\bar{A} \mid A X)=\mathrm{F} .
\end{aligned}
$$

(Definition of T)
(Definitions of N and F)
(Definition of o)

$$
\begin{aligned}
& x \circ \mathrm{~F}=\mathrm{F}: \\
& \Rightarrow(\overline{A \bar{A}} \mid X)=\mathrm{T} . \\
& \Rightarrow N(\overline{A \bar{A}} \mid X)=N(\mathrm{~T}) . \\
& \Rightarrow(A \bar{A} \mid X)=\mathrm{F} . \\
& \bullet \underbrace{(A \bar{A} \mid X)}_{\mathrm{F}}=(A \mid X) \circ(\bar{A} \mid A X) . \\
& \bullet(\bar{A} \mid A X)=\mathrm{F} . \\
& \Rightarrow \mathrm{F}=(A \mid X) \circ \mathrm{F} . \\
& \\
& \text { QED. }
\end{aligned}
$$

Plausible Reasoning: Conjunction

$$
x \circ(y \circ z)=(x \circ y) \circ z
$$

Plausible Reasoning: Conjunction

$$
x \circ(y \circ z)=(x \circ y) \circ z:
$$

$(A B C \mid X)$

Plausible Reasoning: Conjunction

$$
\begin{aligned}
& x \circ(y \circ z)=(x \circ y) \circ z: \\
& \quad(A B C \mid X)=(A(B C) \mid X)
\end{aligned}
$$

Plausible Reasoning: Conjunction

$$
\begin{aligned}
& x \circ(y \circ z)=(x \circ y) \circ z: \\
& \begin{aligned}
(A B C \mid X) & =(A(B C) \mid X) \\
& =(A \mid X) \circ(B C \mid A X)
\end{aligned}
\end{aligned}
$$

Plausible Reasoning: Conjunction

$$
\begin{aligned}
& x \circ(y \circ z)=(x \circ y) \circ z: \\
& \quad(A B C \mid X)=(A(B C) \mid X) \\
& \\
& =(A \mid X) \circ(B C \mid A X) \\
& \\
& =(A \mid X) \circ((B \mid A X) \circ(C \mid A B X)),
\end{aligned}
$$

Plausible Reasoning: Conjunction

$$
\begin{aligned}
& x \circ(y \circ z)=(x \circ y) \circ z: \\
& (A B C \mid X)=(A(B C) \mid X) \\
& =(A \mid X) \circ(B C \mid A X) \\
& =(A \mid X) \circ((B \mid A X) \circ(C \mid A B X)) \text {, } \\
& (A B C \mid X)=((A B) C \mid X)
\end{aligned}
$$

Plausible Reasoning: Conjunction

$$
\begin{aligned}
& x \circ(y \circ z)=(x \circ y) \circ z: \\
&(A B C \mid X)=(A(B C) \mid X) \\
&=(A \mid X) \circ(B C \mid A X) \\
&=(A \mid X) \circ((B \mid A X) \circ(C \mid A B X)), \\
&(A B C \mid X)=((A B) C \mid X) \\
&=(A B \mid X) \circ(C \mid A B X)
\end{aligned}
$$

Plausible Reasoning: Conjunction

$$
\begin{aligned}
& x \circ(y \circ z)=(x \circ y) \circ z: \\
&(A B C \mid X)=(A(B C) \mid X) \\
&=(A \mid X) \circ(B C \mid A X) \\
&=(A \mid X) \circ((B \mid A X) \circ(C \mid A B X)), \\
&(A B C \mid X)=((A B) C \mid X) \\
&=(A B \mid X) \circ(C \mid A B X) \\
&=((A \mid X) \circ(B \mid A X)) \circ(C \mid A B X) . \text { QED. }
\end{aligned}
$$

Plausible Reasoning: Conjunction

$$
\begin{gathered}
x \circ \mathrm{~T}=\mathrm{T} \circ x=x \\
x \circ \mathrm{~F}=\mathrm{F} \circ x=\mathrm{F} \\
x \circ(y \circ z)=(x \circ y) \circ z
\end{gathered}
$$

Plausible Reasoning: Conjunction

$$
\begin{gathered}
x \circ \mathrm{~T}=\mathrm{T} \circ x=x \\
x \circ \mathrm{~F}=\mathrm{F} \circ x=\mathrm{F} \\
x \circ(y \circ z)=(x \circ y) \circ z
\end{gathered}
$$

$$
\begin{gathered}
x \cdot 1=1 \cdot x=x \\
x \cdot 0=0 \cdot x=0 \\
x \cdot(y \cdot z)=(x \cdot y) \cdot z
\end{gathered}
$$

Lemma (Product Rule)

There exists a nonnegative, strictly increasing function p such that

$$
p(A B \mid X)=p(A \mid X) p(B \mid A X)
$$

for all A and B.

Lemma (Product Rule)

There exists a nonnegative, strictly increasing function p such that

$$
p(A B \mid X)=p(A \mid X) p(B \mid A X)
$$

for all A and B.

- $p(A B \mid X)=p((A \mid X) \circ(B \mid A X))=p(A \mid X) p(B \mid A X)$

Lemma (Product Rule)

There exists a nonnegative, strictly increasing function p such that

$$
p(A B \mid X)=p(A \mid X) p(B \mid A X)
$$

for all A and B.

$$
\begin{aligned}
& p(A B \mid X)=p((A \mid X) \circ(B \mid A X))=p(A \mid X) p(B \mid A X) \\
& \quad \Rightarrow \circ \cong \times \text {. }
\end{aligned}
$$

Lemma (Product Rule)

There exists a nonnegative, strictly increasing function p such that

$$
p(A B \mid X)=p(A \mid X) p(B \mid A X)
$$

for all A and B.

- $p(A B \mid X)=p((A \mid X) \circ(B \mid A X))=p(A \mid X) p(B \mid A X)$

$$
\Rightarrow \circ \cong x .
$$

- $p(B \mid A X)=\frac{p(A B \mid X)}{p(A \mid X)}$.

Cox's Theorem

$$
p(\mathrm{~T})=1
$$

Cox's Theorem

$$
\begin{aligned}
& p(\mathrm{~T})=1: \\
& \quad \cdot(A \mid X)=(A(B+\bar{B}) \mid X) .
\end{aligned}
$$

Cox's Theorem

$$
\begin{aligned}
& p(\mathrm{~T})=1: \\
& \quad(A \mid X)=(A(B+\bar{B}) \mid X) . \\
& \Rightarrow p(A \mid X)=p(A(B+\bar{B}) \mid A X) .
\end{aligned}
$$

Cox's Theorem

$$
\begin{aligned}
& p(\mathrm{~T})=1: \\
& \quad \bullet(A \mid X)=(A(B+\bar{B}) \mid X) . \\
& \Rightarrow p(A \mid X)=p(A(B+\bar{B}) \mid A X) . \\
& \Rightarrow p(A \mid X)=p(A \mid X) p(B+\bar{B} \mid A X) .
\end{aligned}
$$

Cox's Theorem

$$
\begin{aligned}
& p(\mathrm{~T})=1: \\
& \bullet(A \mid X)=(A(B+\bar{B}) \mid X) . \\
& \Rightarrow p(A \mid X)=p(A(B+\bar{B}) \mid A X) . \\
& \Rightarrow p(A \mid X)=p(A \mid X) p(B+\bar{B} \mid A X) . \\
& \bullet(B+\bar{B} \mid A X)=\mathrm{T} .
\end{aligned}
$$

(Product Rule)
(Definition of T)

Cox's Theorem

$$
\begin{aligned}
& p(\mathrm{~T})=1: \\
& \left.\quad \begin{array}{l}
\\
\quad(A \mid X)=(A(B+\bar{B}) \mid X) . \\
\Rightarrow p(A \mid X)=p(A(B+\bar{B}) \mid A X) . \\
\Rightarrow p(A \mid X)=p(A \mid X) p(B+\bar{B} \mid A X) . \\
\bullet \\
\Rightarrow p(B+\bar{B} \mid A X)=\mathrm{T} .
\end{array}\right]=p(A \mid X)=p(A \mid X) p(\mathrm{~T}) .
\end{aligned}
$$

(Product Rule)
(Definition of T)

Cox's Theorem

$$
\begin{aligned}
& p(\mathrm{~T})=1: \\
& \quad(A \mid X)=(A(B+\bar{B}) \mid X) . \\
& \Rightarrow p(A \mid X)=p(A(B+\bar{B}) \mid A X) . \\
& \Rightarrow p(A \mid X)=p(A \mid X) p(B+\bar{B} \mid A X) . \\
& \bullet(B+\bar{B} \mid A X)=\mathrm{T} . \\
& \Rightarrow p(A \mid X)=p(A \mid X) p(\mathrm{~T}) . \\
& \Rightarrow 1=p(\mathrm{~T}) .
\end{aligned}
$$

QED.

Cox's Theorem

$$
\begin{aligned}
& p(\mathrm{~T})=1: \\
& \bullet(A \mid X)=(A(B+\bar{B}) \mid X) . \\
& \Rightarrow p(A \mid X)=p(A(B+\bar{B}) \mid A X) . \\
& \Rightarrow p(A \mid X)=p(A \mid X) p(B+\bar{B} \mid A X) . \\
& \bullet(B+\bar{B} \mid A X)=\mathrm{T} . \\
& \Rightarrow p(A \mid X)=p(A \mid X) p(\mathrm{~T}) \\
& \Rightarrow 1=p(\mathrm{~T}) \\
& \quad \text { QED. } \\
& p(\mathrm{~F})=0 .
\end{aligned}
$$

Cox's Theorem

$$
0 \leq p(A \mid X) \leq 1
$$

Cox's Theorem

$$
\begin{aligned}
& 0 \leq p(A \mid X) \leq 1: \\
& \quad \cdot \mathrm{F} \leq(A \mid X) \leq \mathrm{T}
\end{aligned}
$$

Cox's Theorem

$$
\begin{aligned}
& 0 \leq p(A \mid X) \leq 1: \\
& \cdot \mathrm{F} \leq(A \mid X) \leq \mathrm{T} . \\
& \Rightarrow p(\mathrm{~F}) \leq p(A \mid X) \leq p(\mathrm{~T}) .
\end{aligned}
$$

$$
\begin{aligned}
0 \leq & p(A \mid X) \leq 1 \\
& \mathrm{~F} \leq(A \mid X) \leq \mathrm{T} \\
\Rightarrow & p(\mathrm{~F}) \leq p(A \mid X) \leq p(\mathrm{~T}) \\
\Rightarrow & 0 \leq p(A \mid X) \leq 1 \\
& \mathrm{QED}
\end{aligned}
$$

Lemma (Sum Rule)

It holds that

$$
p(\bar{A} \mid X)=1-p(A \mid X)
$$

for all A.

Lemma (Sum Rule)

It holds that

$$
p(\bar{A} \mid X)=1-p(A \mid X)
$$

for all A.

$$
p(\bar{A} \mid X)=p(N(A \mid X))=1-p(A \mid X)
$$

Lemma (Sum Rule)

It holds that

$$
p(\bar{A} \mid X)=1-p(A \mid X)
$$

for all A.

$$
\begin{aligned}
& \quad p(\bar{A} \mid X)=p(N(A \mid X))=1-p(A \mid X) . \\
& \quad \Rightarrow N \cong 1-\cdot
\end{aligned}
$$

Theorem (Cox)

Plausibility is probability.

\(\begin{aligned} valid: \& (P \mid B X)
(modus tollens) \& \frac{P}{P}\end{aligned}\)
$\therefore \bar{B}$
invalid:
(logical fallacy)
$$
C \Longrightarrow K
$$
$$
K
$$
$$
\therefore C
$$

valid: $\quad p(P \mid B X)=1$
(modus tollens)

$$
p(B \mid \bar{P} X)=\ldots
$$

\bar{B}
invalid:
(logical fallacy)
$C \Longrightarrow K$
K
$\therefore C$

Reasoning: Revisited

$$
p(B \mid \bar{P} X)
$$

Reasoning: Revisited

$$
p(B \mid \bar{P} X)=\frac{p(B \bar{P} \mid X)}{p(\bar{P} \mid X)}
$$

(Product Rule)

Reasoning: Revisited

$$
\begin{aligned}
p(B \mid \bar{P} X) & =\frac{p(B \bar{P} \mid X)}{p(\bar{P} \mid X)} \\
& =\frac{p(\bar{P} \mid B X) p(B \mid X)}{p(\bar{P} \mid X)}
\end{aligned}
$$

(Product Rule)
(Product Rule)

$$
\begin{aligned}
p(B \mid \bar{P} X) & =\frac{p(B \bar{P} \mid X)}{p(\bar{P} \mid X)} \\
& =\frac{p(\bar{P} \mid B X) p(B \mid X)}{p(\bar{P} \mid X)} \\
& =\frac{(1-p(P \mid B X)) p(B \mid X)}{p(\bar{P} \mid X)}
\end{aligned}
$$

(Product Rule)
(Product Rule)
(Sum Rule)

$$
\begin{array}{rlrl}
p(B \mid \bar{P} X) & =\frac{p(B \bar{P} \mid X)}{p(\bar{P} \mid X)} & & \text { (Product Rule) } \\
& =\frac{p(\bar{P} \mid B X) p(B \mid X)}{p(\bar{P} \mid X)} & & \text { (Product Rule) } \\
& =\frac{(1-p(P \mid B X)) p(B \mid X)}{p(\bar{P} \mid X)} & & \text { (Sum Rule) } \\
& =\frac{(1-1) p(B \mid X)}{p(\bar{P} \mid X)} & (X=(B \Longrightarrow P))
\end{array}
$$

Reasoning: Revisited

$$
\begin{array}{rlrl}
p(B \mid \bar{P} X) & =\frac{p(B \bar{P} \mid X)}{p(\bar{P} \mid X)} & & \text { (Product Rule) } \\
& =\frac{p(\bar{P} \mid B X) p(B \mid X)}{p(\bar{P} \mid X)} & & \text { (Product Rule) } \\
& =\frac{(1-p(P \mid B X)) p(B \mid X)}{p(\bar{P} \mid X)} & & \text { (Sum Rule) } \\
& =\frac{(1-1) p(B \mid X)}{p(\bar{P} \mid X)} & (X=(B \Longrightarrow P)) \\
& =0 &
\end{array}
$$

valid: $\quad p(P \mid B X)=1$
(modus tollens)

$$
p(B \mid \bar{P} X)=0
$$

$\therefore \bar{B}$
invalid:
(logical fallacy)
$C \Longrightarrow K$
K
$\therefore C$

Reasoning: Revisited
valid: $\quad p(P \mid B X)=1$
(modus tollens)

$$
p(B \mid \bar{P} X)=0
$$

$\therefore \bar{B}$

$$
\text { invalid: } \quad p(K \mid C Y)=1
$$

(logical fallacy)

$$
p(C \mid K Y)=\ldots
$$

Reasoning: Revisited

$$
p(C \mid K Y)
$$

$$
p(C \mid K Y)=\frac{p(C K \mid Y)}{p(K \mid Y)}
$$

(Product Rule)

$$
\begin{aligned}
p(C \mid K Y) & =\frac{p(C K \mid Y)}{p(K \mid Y)} \\
& =\frac{p(K \mid C Y) p(C \mid Y)}{p(K \mid Y)}
\end{aligned}
$$

(Product Rule)
(Product Rule)

$$
\begin{aligned}
p(C \mid K Y) & =\frac{p(C K \mid Y)}{p(K \mid Y)} \\
& =\frac{p(K \mid C Y) p(C \mid Y)}{p(K \mid Y)} \\
& =\frac{1 \cdot p(C \mid Y)}{p(K \mid Y)}
\end{aligned}
$$

(Product Rule)
(Product Rule)

$$
(Y=(C \Longrightarrow K))
$$

$$
\begin{aligned}
p(C \mid K Y) & =\frac{p(C K \mid Y)}{p(K \mid Y)} \\
& =\frac{p(K \mid C Y) p(C \mid Y)}{p(K \mid Y)} \\
& =\frac{1 \cdot p(C \mid Y)}{p(K \mid Y)} \\
& =\frac{p(C \mid Y)}{p(K \mid Y)}
\end{aligned}
$$

(Product Rule)
(Product Rule)
$(Y=(C \Longrightarrow K))$

Reasoning: Revisited

$$
\begin{array}{rll}
\text { valid: } & p(P \mid B X)=1 & \frac{\bar{B}}{\bar{P}} \overline{\text { (modus tollens) }} \\
& p(B \mid \bar{P} X)=0 & \therefore \bar{B} \\
& p(C \mid K Y)=\frac{p(K \mid C Y) p(C \mid Y)}{p(K \mid Y)}
\end{array}
$$

Reasoning: Revisited

$$
\begin{aligned}
& p(B \mid \bar{P} X)=\frac{p(\bar{P} \mid B X) p(B \mid X)}{p(\bar{P} \mid X)} \\
& p(C \mid K Y)=\frac{p(K \mid C Y) p(C \mid Y)}{p(K \mid Y)}
\end{aligned}
$$

Plausibility

$(A \mid X) \quad \longrightarrow \quad p \longrightarrow \quad p(A \mid X)$

Plausibility
$(A \mid X)$
$\longleftarrow p^{-1}$

$p(A \mid X)$

It is clear that, not only is the quantitative use of the rules of probability theory as extended logic the only sound way to conduct inference; it is the failure to follow those rules strictly that has for many years been leading to unnecessary errors, paradoxes, and controversies.
(Jaynes, 2003, p. 143)

